The study of

The study of (olive/oleic bio-alkyd resin, OOBAR) as a new biosorbent was prepared in open esterification system from an olive tree, glycerol, oleic acid and phthalic anhydride. OOBAR characterization was performed by using ultraviolet/visible, infrared spectra, Boehm titration, zero-point charge, iodine number, methylene blue index and bulk DC electrical conductivity. The obtained data of acidic and basic sites show that the OOBAR surface was contained 2.6 and 1.3 mmol/g. The pHZCP was 3.6, ?pH at pH 9.27 was -4.33, the I2 number was 2.3 mmol/g (291.9 mg/g), methylene blue was 0.69 mmol/g (220.7 mg/g), density was 0.6 g/mL and DC conductivity was 1.0 ×10-9 ?-1 cm-1. The effects of acidity, reducing agent, NH4SCN concentration, shaking time, Mo concentration, temperature, OOBAR dose, batch factor and ionic strength for Mo(V) were determined. The maximum OOBAR capacity for Mo(V) sorption was 1.3 mmol/g. The molar ratio of Mo(SCN)6-, OOBAR+ was 1:1 in acidic medium. The equilibrium isotherms, kinetics and thermodynamic models for sorption of Mo(V) onto OOBAR were studied. Thermodynamic parameters such as standard enthalpy (?H), standard entropy (?S) and standard free energy (?G) was -46.2 kJ/mol, -0.082 kJ/Kmol and -21.8 kJ/mol was shown that the sorption process was spontaneous, exothermic nature with decrease disorder and randomness at the solid-liquid interface of Mo with OOBAR. Dynamic experiments using glass column was indicated a good affinity chromatographic separation for its applications in many pharmaceutical and biological samples including liver mice tissue and pharmaceutical vitamin drugs. The lower relative standard deviation (RSD%) value for pharmaceutical applications samples (n=5) was found from 1.1%.